Accelerating End-to-End Deep Learning for Particle Reconstruction using CMS open data
نویسندگان
چکیده
Machine learning algorithms are gaining ground in high energy physics for applications particle and event identification, analysis, detector reconstruction, simulation trigger. Currently, most data-analysis tasks at LHC experiments benefit from the use of machine learning. Incorporating these computational tools experimental framework presents new challenges. This paper reports on implementation end-to-end deep with CMS software scaling multiple GPUs. The technique combines low-level representation identification. We demonstrate a top quark benchmark perform studies various hardware architectures including single GPUs Google TPU.
منابع مشابه
Fault Identification using end-to-end data by imperialist competitive algorithm
Faults in computer networks may result in millions of dollars in cost. Faults in a network need to be localized and repaired to keep the health of the network. Fault management systems are used to keep today’s complex networks running without significant cost, either by using active techniques or passive techniques. In this paper, we propose a novel approach based on imperialist competitive alg...
متن کاملFault Identification using end-to-end data by imperialist competitive algorithm
Faults in computer networks may result in millions of dollars in cost. Faults in a network need to be localized and repaired to keep the health of the network. Fault management systems are used to keep today’s complex networks running without significant cost, either by using active techniques or passive techniques. In this paper, we propose a novel approach based on imperialist competitive alg...
متن کاملTVM: End-to-End Optimization Stack for Deep Learning
Scalable frameworks, such as TensorFlow, MXNet, Caffe, and PyTorch drive the current popularity and utility of deep learning. However, these frameworks are optimized for a narrow range of server-class GPUs and deploying workloads to other platforms such as mobile phones, embedded devices, and specialized accelerators (e.g., FPGAs, ASICs) requires laborious manual effort. We propose TVM, an end-...
متن کاملEnd-to-End Deep Learning for Driver Distraction Recognition
In this paper, an end-to-end deep learning solution for driver distraction recognition is presented. In the proposed framework, the features from pre-trained convolutional neural networks VGG-19 are extracted. Despite the variation in illumination conditions, camera position, driver’s ethnicity, and genders in our dataset, our best fine-tuned model, VGG-19 has achieved the highest test accuracy...
متن کاملEnd-to-End Deep Learning for Person Search
Existing person re-identification (re-id) benchmarks and algorithms mainly focus on matching cropped pedestrian images between queries and candidates. However, it is different from real-world scenarios where the annotations of pedestrian bounding boxes are unavailable and the target person needs to be found from whole images. To close the gap, we investigate how to localize and match query pers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Epj Web of Conferences
سال: 2021
ISSN: ['2101-6275', '2100-014X']
DOI: https://doi.org/10.1051/epjconf/202125103057